High Speed Optocoupler, 10 MBd, SOIC-8 Package

18921-16

DESCRIPTION

The SFH675xT-series, is a dual channel 10 MBd optocoupler utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. The detector has an open drain NMOS-transister output, providing less leakage compared to an open collector Schottky clamped transister output. The internal shield provides a guaranteed common mode transient immunity of $5 \mathrm{kV} / \mu \mathrm{s}$ for the SFH6756T and $15 \mathrm{kV} / \mu \mathrm{s}$ for the SFH6757T. The use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pin 5 and 8 is recommended.

AGENCY APPROVALS

- UL1577, file no. E52744 system code Y
- CUL - file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5 (VDE 0884) available with option 1

FEATURES

- Choice of CMR performance of $15 \mathrm{kV} / \mu \mathrm{s}$, $5 \mathrm{kV} / \mu \mathrm{s}$, and $100 \mathrm{~V} / \mu \mathrm{s}$

- External creepage distance > 5 mm
- High speed: 10 Mbd typical
- + 5 V CMOS compatibility
- Guaranteed AC and DC performance over temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ temperature range
- Pure tin leads
- Meets IEC 60068-2-42 $\left(\mathrm{SO}_{2}\right)$ and IEC 60068-2-43 $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ requirements
- Low input current capability: 5 mA
- Lead (Pb)-free component
- Component in accordance to RoBS 2002/95/EC and WEE 2002/96/EC

APPLICATIONS

- Microprocessor system interface
- PLC, ATE input/output isolation
- Computer peripheral interface
- Digital fieldbus isolation: CC-link, DeviceNet, profibus, SD
- High speed A / D and D / A conversion
- AC plasma display panel level shifting
- Multiplexed data transmission
- Digital control power supply
- Ground loop elimination

ORDER INFORMATION	
PART	REMARKS
SFH6755T	$100 \mathrm{~V} / \mu \mathrm{s}$, dual channel, SOIC-8
SFH6756T	$5 \mathrm{kV} / \mu \mathrm{s}$, dual channel, SOIC-8
SFH6757T	$15 \mathrm{kV} / \mu \mathrm{s}$, dual channel, SOIC-8

TRUTH TABLE (positive logic)

LED	ENABLE	OUTPUT
ON	H	L
OFF	H	H
ON	L	H
OFF	L	H
ON	NC	L
OFF	NC	H

ABSOLUTE MAXIMUM RATINGS (1)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Average forward current (single channel)		$I_{\text {F }}$	20	mA
Average forward current (per channel for dual channel)		$I_{\text {F }}$	15	mA
Reverse input voltage		$\mathrm{V}_{\text {R }}$	5	V
Surge current	$\mathrm{t}=100 \mu \mathrm{~s}$	$\mathrm{I}_{\text {FSM }}$	200	mA
Output power dissipation (single channel)		$\mathrm{P}_{\text {diss }}$	35	mW
Output power dissipation (per channel for dual channel)		$\mathrm{P}_{\text {diss }}$	25	mW
OUTPUT				
Supply voltage	1 min maximum	V_{CC}	7	V
Output current		I_{0}	50	mA
Output voltage		V_{0}	7	V
Output power dissipation (single channel)		$\mathrm{P}_{\text {diss }}$	85	mW
Output power dissipation (for dual channel)		$\mathrm{P}_{\text {diss }}$	60	mW
COUPLER				
Isolation test voltage	$\mathrm{t}=1.0 \mathrm{~s}$	$\mathrm{V}_{\text {ISO }}$	4000	$\mathrm{V}_{\text {RMS }}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature		$\mathrm{T}_{\text {amb }}$	- 40 to + 100	${ }^{\circ} \mathrm{C}$
Lead solder temperature	for 10 s		260	${ }^{\circ} \mathrm{C}$
Solder reflow temperature ${ }^{(2)}$	for 1 min	$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$

Notes

(1) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
(2) Refer to reflow profile for soldering conditions for surface mounted devices.

RECOMMENDED OPERATING CONDITIONS					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT
Operating temperature		$\mathrm{T}_{\mathrm{amb}}$	-40	100	${ }^{\circ} \mathrm{C}$
Supply voltage		V_{CC}	4.5	5.5	V
Input current low level		I_{FL}	0	250	$\mu \mathrm{~A}$
Input current high level		I_{FH}	5	15	mA
Output pull up resistor		R_{L}	330	4 K	Ω
Fanout		N		5	-

THERMAL CHARACTERISTICS							TEST CONDITION	SYMBOL	VALUE	UNIT
PARAMETER	at $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {diss }}$	100	mW						
LED power dissipation	at $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {diss }}$	500	mW						
Output power dissipation		$\mathrm{T}_{\text {jmax }}$	125	${ }^{\circ} \mathrm{C}$						
Maximum LED junction temperature		$\mathrm{T}_{\text {jmax }}$	125	${ }^{\circ} \mathrm{C}$						
Maximum output die junction temperature	$\theta_{\text {EE }}$	412	${ }^{\circ} \mathrm{C} / \mathrm{W}$							
Thermal resistance, junction emitter to emitter		$\theta_{\text {DE }}$	133	${ }^{\circ} \mathrm{C} / \mathrm{W}$						
Thermal resistance, junction detector to emitter										

THERMAL CHARACTERISTICS	TEST CONDITION	SYMBOL	VALUE	UNIT
PARAMETER		$\theta_{\text {EB }}$	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction emitter to board		$\theta_{\text {DB }}$	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction detector to board		$\theta_{\text {EC }}$	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction emitter to case				

Note
The thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay's Thermal Characteristics of Optocouplers Application note.

ELECTRICAL CHARACTERISTICS

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Input forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	1.1	1.4	1.7	V
Reverse current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}		0.01	10	$\mu \mathrm{A}$
Input capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	Cl_{1}		55		pF
OUTPUT						
High level supply current (single channel)	$\mathrm{V}_{\mathrm{E}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CCH}}$		4.1	7.0	mA
	$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CCH}}$		3.3	6.0	mA
High level supply current (dual channel)	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CCH}}$		6.5	12.0	mA
Low level supply current (single channel)	$\mathrm{V}_{\mathrm{E}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{I}_{\text {CCL }}$		4.0	7.0	mA
	$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CLL}}$		3.3	6.0	mA
Low level supply current (dual channel)	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CCL}}$		6.5	12.0	mA
High level output current	$\mathrm{V}_{\mathrm{E}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}$	IOH		0.002	1	$\mu \mathrm{A}$
Low level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{E}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OL}} \text { (sinking) }=13 \mathrm{~mA} \\ & \hline \end{aligned}$	VoL		0.2	0.6	V
Input threshold current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{E}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}} \text { (sinking) }=13 \mathrm{~mA} \end{aligned}$	$\mathrm{I}_{\text {TH }}$		2.4	5.0	mA

Note

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$, unless otherwise specified.
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Vishay Semiconductors

High Speed Optocoupler, 10 MBd, SOIC-8 Package

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to high output level	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{t}_{\text {PLH }}$	20	48	100	ns
Propagation delay time to low output level	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{t}_{\text {PHL }}$	25	50	100	ns
Pulse width disortion	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\left\|\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right\|$		2.9	35	ns
Propagation delay skew	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{t}_{\text {PSK }}$		8	40	ns
Output rise time $(10$ to $90 \%)$	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	t_{r}		23		ns
Output fall time $(90$ to $10 \%)$	$\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	t_{f}		7	ns	

Note
Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+100^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ unless otherwise specified. All typicals at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Fig. 1 - Dual Channel Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}$ and t_{f}

COMMON MODE TRANSIENT IMMUNITY

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode transient immunity (high)	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{CM}}\right\|=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{O}(\text { min. })}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}{ }^{(1)} \end{gathered}$	\|CM ${ }_{\text {H }}$	100			V/us
	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{CM}}\right\|=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{O}(\text { min. })}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}{ }^{(2)} \end{gathered}$	\|CM ${ }_{\text {H }}$	5000	10000		V/us
	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{CM}}\right\|=1 \mathrm{kV}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{O}(\text { min. })}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}{ }^{(3)} \end{gathered}$	\|CM ${ }_{\text {H }}$	15000	25000		V/ $/ \mathrm{s}$
Common mode transient immunity (low)	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{CM}}\right\|=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ \mathrm{~V}_{(\text {(max. })}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}(1) \end{gathered}$	\|CM ${ }_{\text {L }}$	100			V/us
	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{CM}}\right\|=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{O}(\text { max. })}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}(2) \\ \hline \end{gathered}$	$\mid \mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$	5000	10000		V/ $/ \mathrm{s}$
	$\begin{gathered} \left\|\mathrm{V}_{\mathrm{Cl}}\right\|=1 \mathrm{kV}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{O}(\text { max. })}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}(3) \end{gathered}$	$\mid \mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$	15000	25000		V/us

Notes

(1) For SFH6755T
(2) For SFH6756T
(3) For SFH6757T

Fig. 2 - Dual Channel Test Circuit for Common Mode Transient Immunity

SAFETY AND INSULATION RATINGS

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification (according to IEC 68 part 1)				55/100/21		
Comparative tracking index		CTI	175		399	
Peak transient overvoltage		$\mathrm{V}_{\text {IOTM }}$	6000			V
Peak insulation voltage		$V_{\text {IORM }}$	560			V
Safety rating - power output		$\mathrm{P}_{\text {So }}$			350	mW
Safety rating - input current		$\mathrm{I}_{\text {S }}$			150	mA
Safety rating - temperature		$\mathrm{T}_{\text {SI }}$			165	${ }^{\circ} \mathrm{C}$
Creepage distance			5			mm
Clearance distance			4			mm
Insulation thickness			0.2			mm

Note

As per IEC 60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of prodective circuits.

TYPICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Fig. 3 - Forward Voltage vs. Ambient Temperature

Fig. 4 - Forward Voltage vs. Forward Current

Fig. 5 - Reverse Current vs. Ambient Temperature

Fig. 6 - Low Level Supply Current vs. Ambient Temperature

Fig. 7 - High Level Supply Current vs. Ambient Temperature

Fig. 8 - Input Threshold on Current vs. Ambient Temperature

Fig. 9 - Input Threshold off Current vs. Ambient Temperature

Fig. 10 - Low Level Output Voltage vs. Ambient Temperature

Fig. 11 - Low Level Output Current vs. Ambient Temperature

Fig. 12 - High Level Output Current vs. Ambient Temperature

Fig. 13 - Output Voltage vs. Forward Input Current

Fig. 14 - Propagation Delay vs. Ambient Temperature

Fig. 15 - Propagation Delay vs. Forward Current

Fig. 16 - Pulse Width Distortion vs. Ambient Temperature

Fig. 17 - Pulse Width Distortion vs. Forward Current

Fig. 19 - Rise and Fall Time vs. Forward Current

Fig. 18 - Rise and Fall Time vs. Ambient Temperature
PACKAGE DIMENSIONS in inches (millimeters) DUAL CHANNEL SOIC-8

ESD CAUTION

This is an ESD (electro static discharge) sensitive device. Electrostatic charges accumulate on the human body and test equipment and can discharge without detection. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ESD withstand voltage of this device is up to 1500 V acc. to JESD22-A114-B.

High Speed Optocoupler, 10 MBd, Vishay Semiconductors SOIC-8 Package

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
3. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
4. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA.
5. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

